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ABSTRACT

The MCNP Monte Carlo radiation-transport code contains versatile capabilities to 

develop and plot geometries used in simulations. Although these capabilities have been 

available in MCNP since the late 1970s, many of the derivational details underpinning 

these capabilities are not contained in the MCNP manual and do not appear to have been 

documented in Los Alamos reports or the published literature. Derivations of many of the 

equations underlying the MCNP geometry transformation and geometry plot utility are 

presented here. Although this document does not include derivations of all of the 

expressions contained in MCNP, its contents should nevertheless provide the reader with 

a deeper understanding of the geometry transformation and plotting features than can be 

obtained using only the MCNP theory manual.

___________________________________________
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1. Introduction

Los Alamos National Laboratory (LANL) develops and maintains the MCNP (Brown, 

2003) and,  prior to the merger, the MCNPXTM(Pelowitz, 2008) Monte Carlo N-Particle 

eXtended general-purpose radiation transport codes. We refer here primarily to MCNP 

because MCNP and MCNPX contain identical coding related to the subject matter 

contained in this document. Some specific mention of MCNPX is made here regarding

the code identifier paradigm used in MCNPX but not in MCNP. A merged version of 

MCNP and MCNPX, MCNP6, is expected to be released in 2012. We refer here to 

MCNP in general except in instances where specific reference is made to a specific 

version of MCNP or to MCNPX.

MCNP accommodates intricate three-dimensional geometrical models, continuous-

energy transport of 34 different particle types plus heavy-ion transport, fuel burnup, and  

high-fidelity delayed-gamma emission. MCNP is written in Fortran 90, has been 

parallelized, and works on platforms including single-processor personal computers 

(PCs), Sun workstations, Linux clusters, and supercomputers. MCNP has approximately 

3000 users throughout the world working on endeavors that include radiation therapy, 

reactor design, and homeland security.

In the late 1970s the geometry treatment in MCNP was expanded and enhanced. The 

MCNP geometry transformation feature dates to the early 1980s (Thompson et. al, 1980), 

first appearing in MCNP 2B (Thompson, 1981). This feature provides the user with a 
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convienient and powerful means of specifying surfaces and objects to create problem 

geometry. This feature allows surfaces can be created in “local” coordinates, where their 

analytic-geometry definitions are simple, and then be moved via translation and/or 

rotation operations to their desired “global-coordinate” locations. Beginning with MCNP 

2B, the code has possessed the ability to treat geometry transformation using the 

coordinate transformation TR card as described in the Coordinate Transformation Card 

section of the user’s manuals.  In that section, the displacement (“O”) and rotation (“B”)  

elements of a geometry transformation are described and their use illustrated. However, it 

appears that no documentation exists that explains the derivation of the coordinate 

transformation feature. 

Visualization of model geometry and of calculated results (“tallies”) is an important 

component of the simulation process, particularly when complex models involving multi-

particle transport are being analyzed. Since its creation three decades ago, the MCNP  

interactive “PLOT” package has been used to plot model geometry. The “MCPLOT” 

package has been used to make two-dimensional (2-D) plots of tally information (i.e., 

calculated fluxes, currents, etc.) and of nuclear cross-section data. 

Chapter 2 of the MCNP (Thompson, 1979), MCNP4A (Breismeister, 1993), and 

MCNP5  (Brown, 2003a) manuals gives some description and derivational information

about the geometry plotter and how it draws cross-sectional views of the problem 

geometry. Included is information discussing the intersection of three-dimensional (3-D)

surfaces with the plot plane and how the surfaces are expressed in plot-plane (s,t)
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coordinates. Comments and expressions for a set of one-parameter equations for the 

surfaces in the plot plane are then provided without derivation. 

In this paper many of the expressions for the geometry transformation and plotting 

features are derived. Although the geometry transformation derivation is straightforward, 

we will point out an important coding nuance that should be carefully noted by code 

developers. The derivation of the plotter equations is not necessary straightforward, and 

the derivation of all coded expressions is very lengthy. As such, we present derivations 

for an illustrative, yet substantive subset of the cases that have been coded. Included in 

the plotter derivation are the one-parameter (“p”) expressions. It is these expressions that 

permit plotting of curves in a straightforward manner that is visually appealing, facilitate 

the checking whether a surface is within the extent of the plot window, and enable the 

checking of the sense with respect to cells bounded by a particular surface. The 

derivation of these single-parameter expressions appears not to have previously been 

documented in detail. Because they are central to the PLOT package, they are 

documented here. During our discussion, specific subroutines and code lines will be 

highlighted to help tie the derivations and coding together.

We cite the work of Thomas N. K. Godfrey in developing the geometry translation 

and rotation capability for MCNP (Thompson et al., 1980; Thompson, 1981). We also

acknowledge the work that William M. Taylor and Charles A. Forest performed in the 
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1970’s to develop the geometry plotting capability.†

2. Overview of geometry transformation and plotting code flow.

They drew in part from Spain

(2007), a fresh print of which has recently been released by Dover Publications.

During the derivation of the geometry transformation equations, it was discovered that 

the theoretical equations differed from the coded expressions in subroutines trfsrf.F,

dunlev.F, etc. In particular, the rotation-component “B” values in the TRF matrix are

transposed relative to the theoretical representation. MCNP corrects this difference via 

the transpose operation performed in subroutine trfsrf.F during processing of the input 

data. Thus, in effect, MCNP transposes the TRF matrix twice to perform the correct 

coordinate-transformation operation. This matter is discussed in detail in Section 3.

The general flow for the geometry transformation and plotting treatment follows. The 

reader should also consult the MCNP manuals (Thompson, 1979; Breismeister, 1993;   

Brown, 2003a).

Geometry transformations involve individual surfaces (e.g., planes, spheres, etc.) or 

macrobodies (e.g., RPP, RCC, etc.) that are specified in “auxiliary” coordinates 

( , ,x y z! ! ! ). This convention simplifies specification for objects whose orientation is not 

parallel to one of the global-coordinate axes. Specifications for a surface’s geometry 

translation and/or rotation are input using the TR card. MCNP uses this transformation to 

† Personal communication from John S. Hendricks June 17, 2010 regarding their undocumented 
contributions. Dr. Hendricks states that name choices of many of the PLOT subroutines were selected by 
Charles Forest to reflect his appreciation of Latin. 
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locate and orient each surface in ( , ,x y z ), and subsequently uses the global-coordinate 

surfaces to do radiation transport and geometry plotting.

MCNP performs geometry plotting by first finding the intersection of each global-

coordinate surface with the plot plane.  This requires a transformation from ( , ,x y z )

coordinates to (s,t) plot-plane coordinates. This transformation is transparent to the user 

(i.e., no input is required). 

The bivariate plot-plane surface intersection equations (line, parabola, hyperbola, 

ellipse) are then transformed to a univariate (p) representation. In this form, points of 

intersection (POIs) for surfaces in the plot plane are determined. MCNP then identifies 

the cells on either side of  a line between each POI. Use of the univariate representation 

simplifies these tasks as compared to using the bivariate formulation.

The terminology “auxiliary” and ( , ,x y z ) coordinates is historical. In the following

discussion, we use “local” (or object) coordinates† , ,L L Lx y z( ) instead of auxiliary 

coordinates and “global” coordinates " #, ,G G Gx y z instead of ( , ,x y z ) coordinates.

Using this updated terminology, the general geometry and plotting code flow is 

sketched in Fig. 1.

† Termed “auxiliary” coordinates ( , ,x y z! ! ! ) in the theory and user’s manuals.
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Figure 1. General geometry transformation and plotting code flow for geometry 

transformation.

3. Geometry transformation.

MCNP represents 3-D surfaces using quadratic and matrix representations. Matrix 

expressions are used to perform geometry transformations. MCNP requires that all 

surfaces be represented in global coordinates ( , ,G G Gx y z ). It offers the user the ability to 

represent surfaces in local coordinates ( , ,L L Lx y z ) and then perform translation and/or 

rotation operations to move each surface to global coordinates.

The equation of a surface in MCNP can be written as a general quadratic of the form

(Brown, 2003a; Spain, 2007; Tierney, 1974)

Object surface specification in local coordinates ( , ,L L Lx y z ).

Transformation from object to global coordinates ( , ,G G Gx y z ).

Find intersection of each surface with plot plane by 
transforming from ( , ,G G Gx y z ) to (s,t) coordinates 
and classify as a straight line, parabola, hyperbola, 
or ellipse.

Transform surfaces from (s,t) to p coordinates, 
determine points of intersection of all surfaces, and 
the identity of each cell on either side of the surface 

connecting each point of intersection.
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2 2 2 0Ax By Cz Dxy Eyz Fzx Gx Hy Jz K$ $ $ $ $ $ $ $ $ % . (1)

In matrix form, Eq.(1) becomes

& '

1

1 0
x

x y x AM
y
z

( )
* +
* + %
* +
* +
, -

(2)

where the AM matrix is 
/ 2 / 2 / 2

/ 2 / 2 / 2
/ 2 / 2 / 2
/ 2 / 2 / 2

K G H J
G A D F

AM
H D B E
J F E C

( )
* +
* +%
* +
* +
, -

. (3)

Equations (1)–(3) are valid for surfaces in local and global coordinates. Thus, the matrix 

representation for local coordinates is

1

1 0
L

L L L L
L

L

x
x y x AM

y
z

( )
* +
* +( ) %, - * +
* +
, -

, (4)

while for global coordinates it is

1

1 0
G

G G G G
G

G

x
x y x AM

y
z

( )
* +
* +( ) %, - * +
* +
, -

. (5)

The local-coordinate representation of a surface is related to the global-coordinate 

representation via the transformation

1 1
L G

L G

L G

x x
TRF

y y
z z

( ) ( )
* + * +
* + * +%
* + * +
* + * +
, - , -

(6)
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where TRF is the transformation matrix. We will consider the contents of TRF shortly. 

Taking the transpose of Eq.(6) gives

1 1L L L G G G Tx y z x y z TRF( ) ( )%, - , - . (7)

Substituting Eqs.(6) and (7) into Eq.(4) gives

1

1 0
G

G G G T L
G

G

x
x y x TRF AM TRF

y
z

( )
* +
* +( ) %, - * +
* +
, -

, (8)

which is the global-coordinate matrix form for a surface given its local-coordinate 

coefficients in the LAM matrix and the transformation matrix TRF. We may now write 

Eq.(5) with GAM given by

G T LAM TRF AM TRF% . (9)

The calculation of Eq.(9) is performed in subroutine trfsrf.F, lines ss.18-ss.27.†

LAM

First, 

the “TM” matrix in trfsrf.F is used to store the TRF transformation-matrix contents. 

Then, the local-coordinate surface-coefficient matrix is loaded in subroutine 

amatrx.F using the general-quadratic surface-coefficient “SCF” array values input by the 

user via the cell cards.*

GAM

Next, two calls are made to subroutine matmpy.F to perform the 

matrix-multiplication operations in Eq.(9) to obtain the global-coordinate surface 

coefficient matrix . After some manipulations, the global-coordinate surface 

coefficients are loaded into the SCF array in lines ss.130-ss.131 in trfsrf.F. These SCF

values are used for particle tracking and geometry plotting.

† As mentioned, code line identifiers pertain to MCNPX.
* Input in subroutine oldcrd.F.
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According to subroutine trfsrf.F, lines ss.18-ss.21, the TRF contents (more precisely, 

the TM array values) are given by

1 4 7

2 5 8

3 6 9

1 0 0 0
G GL GL GL

G GL GL GL

G GL GL GL

x B B B
TRF

y B B B
z B B B

( )
* +.* +%
* +.
* +., -

, (10)

where the Bs are defined in the theory manual (Brown, 2003b) as

1 2 3

4 5 6

7 8 9

ˆˆ ˆ ˆ ˆ ˆ, ,
ˆˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆˆ ˆ, , .

GL G L GL G L GL G L

GL G L GL G L GL G L

GL G L GL G L GL G L

B i i B j i B k i

B i j B j j B k j

B i k B j k B k k

% / % / % /

% / % / % /

% / % / % /

(11)

Let us examine the rotation elements more closely. Using Eq.(10) in Eq.(6) gives

1 4 7

2 5 8

3 6 9

L G GL G GL G GL G

L G GL G GL G GL G

L G GL G GL G GL G

x x B x B y B z
y y B x B y B z
z z B x B y B z

% . $ $ $

% . $ $ $

% . $ $ $

(12)

which, using the definitions of the Bs from Eq.(11), becomes

ˆˆ ˆ ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

L G G L G G L G G L G

L G G L G G L G G L G

L G G L G G L G G L G

x x i i x i j y i k z
y y j i x j j y j k z
z z k i x k j y k k z

% . $ / $ / $ /

% . $ / $ / $ /

% . $ / $ / $ /

. (13)

This expression does not

ˆˆ ˆG G G G G G GR x i y j z k% $ $
!

reduce to a form that represents the projection of the position 

vector onto the local-coordinate unit vectors ˆLi , ˆLj , and ˆLk .

This puzzling fact hints that the form of TRF in Eq.(10) and in trfsrf.F is questionable.

Now let us consider coordinate rotation as illustrated by the two rectangular 

coordinate systems shown in Fig. 2. Because the origins of the two coordinates systems 
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are identical, this configuration depicts coordinate rotation and excludes coordinate 

translation. 

Figure 2. Coordinate-system rotation illustrated by global and local rectangular 

coordinate systems having the same origin.

The values of the local-coordinate variables , ,L L Lx y z can be obtained by projecting the 

position vector GR
!

onto the local-coordinate unit vectors ˆLi , ˆLj , and ˆLk (Wylie, 1975).

Thus,

ˆˆ ˆ ˆ ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

L G G L G G L G G L G G G L

L G G L G G L G G L G G G L

L G G L G G L G G L G G G L

x x i i x j i y k i z x R i
y y i j x j j y k j z y R j
z z i k x j k y k k z z R k

% . $ / $ / $ / % . $ /

% . $ / $ / $ / % . $ /

% . $ / $ / $ / % . $ /

!
!
!

, (14)

where 

xG

yG

xL

yL

zL

ˆGi

ˆLi

ˆGj

ˆLj

ˆGk
ˆLk

GR
!

( , , ) : ( , , )G G G L L LP x y z P x y z

zG
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ˆˆ ˆG G G G G G GR x i y j z k% $ $
!

. (15)

Using the MCNP definitions for 1 9
GL GLB B0 from Eq.(11), Eq.(14) becomes

1 2 3

4 5 6

7 8 9

L G GL G GL G GL G

L G GL G GL G GL G

L G GL G GL G GL G

x x B x B y B z
y y B x B y B z
z z B x B y B z

% . $ $ $

% . $ $ $

% . $ $ $

. (16)

Consequently, the transformation matrix TRF" takes the form

1 2 3

4 5 6

7 8 9

1 0 0 0
G GL GL GL

G GL GL GL

G GL GL GL

x B B B
TRF

y B B B
z B B B

( )
* +.* +%
* +.
* +., -

" . (17)

Comparing Eq.(17), the rotation-matrix elements derived by projecting the position 

vector GR
!

onto the local-coordinate unit vectors, to Eq.(10), the MCNP rotation matrix,

reveals that the rotation components of TRF and TRF" are transposed.

The key operation involving the transformation matrix TRF appears in Eq.(8). If the 

version of TRF in Eq.(10) (and coded in trfsrf.F) were a typo, and if the version in 

Eq.(17) is the actual transformation matrix, then matters would “work out” if 

T L L TTRF AM TRF TRF AM TRF% . (18)

Unfortunately, even though AM is symmetric as seen in Eq.(3),

T L L TTRF AM TRF TRF AM TRF1 . (19)

This draws into question the meaning of the rotation-matrix elements in MCNP.
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The conflict is resolved in MCNP as follows. The Bs from TR cards are input into

nextit.F during rdprob.F processing. Subroutine rdprob.F then calls oldcrd.F, which 

calls trfmat.F. Subroutine trfmat.F does several things, including orthonormalizing and 

transposing the Bs (TRF matrix) in lines tm4b.15-tm.112. The coding in subroutine 

trfsrf.F, lines ss.18-ss.21, transposes the Bs so that the matrix appears as in Eq.(17)

rather than Eq.(10). Thus, MCNP is performing properly, albeit with two (seemingly 

unnecessary) transpose operations.

4. Geometry plotter: intersection of 3-D surfaces with the plot plane.

The MCNP geometry plotter draws cross-sectional views of the problem geometry 

according to commands entered by the user. MCNP determines the intersection of each 

global-coordinate surface with the plot plane. The expressions in the MCNP manuals and 

the derivation of these expressions rely on analytic geometry and matrix theory for linear 

and quadratic algebraic equations.

From Eq.(1), the equation of an MCNP global-coordinate surface is

2 2 2( ) ( ) ( )
0 .

G G G G G G G G G G G G G G G

G G G G G G G

A x B y C z D x y E y z F x z
G x H y J z K

$ $ $ $ $

$ $ $ $ %
(20)

The surface coefficients G GA K0 are contained in the SCF array as loaded in trfsrf.F

lines ss.130–ss.131.

The equation of the plot plane can be expressed using the parametric representation

for the equation of a plane (Trench, 1972). The plot plane is specified in terms of its 

position with respect to the origin and the orientation of its coordinate axes with respect 
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to the surfaces of the problem. The position of the plot plane with respect to the origin is 

given by the vector 0r
! . The plot plane is characterized by two linearly independent basis 

vectors a! and b
!

and the parameters s and t so that

0r r sa tb% $ $
!! ! ! (21)

where

0 0 0 0

ˆˆ ˆ
ˆˆ ˆ
ˆˆ ˆ

ˆˆ ˆ .
x y z

x y z

r xi yj zk
r x i y j z k

a a i a j a k

b b i b j b k

% $ $

% $ $

% $ $

% $ $

!
!

!
!

(22)

Figure 3 illustrates the plot plane and an object intersecting the plane.

Figure 3. Plot plane and rectangular object.

In matrix form Eqs.(21) and (22) are

x

z

y

0r
!

b
!

tb
!

a!

sa!

0r r sa tb% $ $
!! ! !



15

0

0

0

1 0 01
1 1G

x x
G

y y
G

z z

x a bx
s PL s

y a by
t t

z a bz

( )( )
( ) ( )* +* +
* + * +* +* + % %* + * +* +* +
* + * +* +* + , - , -

, - , -

(23)

where

0

0

0

1 0 0

x x

y y

z z

x a b
PL

y a b
z a b

( )
* +
* +%
* +
* +
, -

. (24)

We seek to develop the expression for intersection of a 3-D surface with the plot 

plane. It can be shown that, with the exception of two parallel lines, the intersection of a 

plane and a 3-D surface can be written as general bivariate quadratic (Hsiung and Mao, 

1998; Kwak and Hong, 1997; Spain, 2007; Tierney, 1974, p.230) in the form (Spain,

2007)

2 22 2 2 0P P P P P PA s H st B t G s F t C$ $ $ $ $ % (25)

using the plot-plane coordinate variables s and t. The superscript “P” is used here to 

explicitly connote that these coefficients pertain to the plot-plane conic rather than the 

coefficients of the surface intersecting the plot plane. This is the representation of a conic 

in the plot plane that is used in MCNP (Brown, 2003a). In matrix form Eq.(25) is

& ' & '
1 1

1 1 0

P P P

P P P

P P P

C G F
s t G A H s s t QM s

F H B t t

( ) ( ) ( )
* + * + * +% %* + * + * +
* + * + * +, - , -, -

. (26)
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Taking the transpose of Eq.(23)

& '1 1G G G Tx y z s t PL( ) %, - (27)

and substituting into Eq.(2) gives the equation of a 3-D object in terms of plot-plane 

coordinates:

& '
1

1 0T Gs t PL AM PL s
t

( )
* + %* +
* +, -

. (28)

Comparison of Eq.(28) and Eq.(26) shows that 

11 12 13

21 22 23

31 32 33

P P P

T G P P P

P P P

C G F q q q
QM PL AM PL G A H q q q

F H B q q q

( ) ( )
* + * +% % 2* + * +
* + * +, -, -

. (29)

Inspection of Eq.(29) shows the QM matrix is both square and symmetric, i.e.,

11 12 13

12 22 23

13 23 33

P P P

T G P P P

P P P

C G F q q q
QM PL AM PL G A H q q q

F H B q q q

( ) ( )
* + * +% % 2* + * +
* + * +, -, -

. (30)

Equation (28) can thus be written as

& '
1

1 0s t QM s
t

( )
* + %* +
* +, -

, (31)

or in the quadratic form

2 2
22 23 33 12 13 112 2 2 0q s q st q t q s q t q$ $ $ $ $ % . (32)

Eq. (31) gives the matrix form of the expression for the intersection of a 3-D surface 

with the plot plane, i.e., the curve(s) to be plotted. The QM matrix is a matrix of the 

coefficients for the quadratic form of the surface(s) in the plot plane. However, these 
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expressions contain two plot variables s and t.  The question arises how to select the 

values of s and t so that an adequate series of points along the curve(s) can be selected 

and plotted using piecewise linear line segments between the points. As pointed out in the 

1979 MCNP manual (Thompson, 1979), there is no consistent way to generate the sets of 

points that lie on the curve for a two-parameter expression. Instead of a two-parameter 

expression, we need a one-parameter representation of Eq.(31) such that, for the 

parameter p,

( ), ( ),s s p t t p p% % 03 4 4 3 . (33)

To develop a one-parameter expression, some useful properties of equations and matrices 

are used. 

Recall that the MCNP geometry-transformation feature (Section 3) takes advantage of 

the simplicity with which surfaces can be defined in local coordinates. These surfaces can 

be translated and rotated to their general-coordinate locations and used to form objects 

with desired locations and orientations. This notion is used for the plotter equations, but 

in a reverse sense: equations can have simpler forms if they are translated and/or rotated 

to other coordinate systems (Kwak and Hong, 1997; Tierney, 1974 pp. 204–206, 225–

226). We seek to simplify Eq.(31) by translation and/or rotation operations to obtain the 

simplest form of the general quadratic equation in an alternate coordinate system. 
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Before considering the translation/rotation matrix, we consider some useful properties 

from matrix theory. First, recall that an “elementary transformation” of a matrix is any 

one of the following operations (Wylie, p. 491):

a. The multiplication of each element of a row or a column by the same nonzero 

constant.

b. The interchange of two rows or of two columns.

c. The addition of any multiple of the elements of one row, or one column, to the 

corresponding elements of another row, or column, respectively.

Second, two matrices are “equivalent” if either of these matrices can be obtained from the 

other by a series of elementary transformations (Wylie, p. 493). Third, a theorem of 

matrix theory is that if A and B are equivalent matrices, then B PAQ% , where P and Q

are nonsingular matrices (Wylie, p. 493). Fourth, a theorem of matrix theory is that any 

square matrix is equivalent to a diagonal matrix (Wylie, p. 494). Fifth, a theorem of 

matrix theory is that a square matrix is congruent (has the same size and shape) to a 

diagonal matrix if and only if it is symmetric, that is TB Q AQ% (Hsiung and Mao, p. 150; 

Wylie, p. 549).

These definitions and theorems are used for the MCNP plotter. Because QM matrix is 

both square and symmetric, Eq.(30), a single matrix DIA and its transpose†

TDIA QM DIA

can be used to 

perform congruence transform (Wylie, p. 497) with the property that is 

diagonal (Wylie, p. 549).

† Rather than two nonsingular matrices for a general equivalence transformation.
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The matrix to be used to effect the congruence transformation and change Eq.(32)

into its simplest form is the general translation and rotation operation matrix in the plot 

plane, defined in the u-v coordinate system (Thompson, 1979; Spain, 2007 pp. 62–64;

Tierney, 1974 pp. 204–206, 225–226) †

0

0

1 1 0 0 1
cos sin
sin cos

s s u
t t v

5 5
5 5

( ) ( ) ( )
* + * + * +% 0* + * + * +
* + * + * +, - , - , -

(34)

or
1 1
s DIA u
t v

( ) ( )
* + * +%* + * +
* + * +, - , -

, (35)

where 

0

0

1 0 0
cos sin
sin cos

DIA s
t

5 5
5 5

( )
* +% 0* +
* +, -

. (36)

The DIAG matrix is 

11 12 13

21 22 23

31 32 33

,T

d d d
DIAG DIA QM DIA d d d

d d d

( )
* +% % * +
* +, -

(37)

where

† The important details in Eqs.(34)–(37) are omitted from subsequent MCNP manuals.
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" # " #
" # " #
" # " #

2 2
11 11 12 21 0 22 0 13 31 0 23 32 0 0 33 0

12 12 22 0 32 0 13 23 0 33 0

21 21 22 0 23 0 31 32 0 33 0

13 12 22 0 32 0 13 23 0 33 0

31 2

( ) ( ) ( )
cos sin
cos sin

sin cos
sin

d q q q s q s q q t q q s t q t
d q q s q t q q s q t
d q q s q t q q s q t
d q q s q t q q s q t
d q

5 5
5 5
5 5
5

% $ $ $ $ $ $ $ $
% $ $ $ $ $

% $ $ $ $ $

% 0 $ $ $ $ $

% 0 " # " #
" # " #
" # " #
" # " #
" #

1 22 0 23 0 31 23 0 33 0

23 23 22 33 32

32 32 22 33 23

22 22 23 23 33

33 23 22 33

cos
cos cos sin sin cos sin
cos cos sin sin cos sin
cos cos sin sin cos sin

sin cos sin cos cos

q s q t q q s q t
d q q q q
d q q q q
d q q q q
d q q q q

5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5

$ $ $ $ $

% 0 $ 0

% 0 $ 0

% $ $ $

% 0 0 $ 0" #23 sin .5

(38)

From Eq.(30), symmetry of the QM matrix means that ij jid d% so that 

11 12 13

12 22 23

13 23 33

,T

d d d
DIAG DIA QM DIA d d d

d d d

( )
* +% % * +
* +, -

(39)

with 11d simplifying to

2 2
11 11 12 0 22 0 13 0 23 0 0 33 02 2 2d q q s q s q t q s t q t% $ $ $ $ $ . (40)

Writing the intersection of an MCNP surface with the plot plane as “I,” we take 

Eq.(26) and use Eq.(35) to give the intersection of a surface and the plot plane in ( , )u v as

& '
1

1 0TI u v DIA QM DIA u
v

( )
* +% %* +
* +, -

. (41)

Using Eq.(39), Eq.(41) expands to 

2 2
11 12 13 23 22 332 2 2 0I d d u d v d uv d u d v% $ $ $ $ $ % . (42)

Equation (42) has the same form as Eq.(25); thus, Eq.(42) is a general bivariate quadratic.

The parameters of the transform, 0s , 0t , and 5 are determined so that 
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the uv term is eliminated from Eq.(42) to give

2 2
11 12 13 22 332 2 0D D D D D DI d d u d v d u d v% $ $ $ $ % . (43)

Specific forms of Eq.(43) are obtained depending on the type of curve (conic) that is 

produced by the intersection of the 3-D surface with the plot plane. The diagonalization

of the QM matrix thus introduces a coordinate system in u and v in which the equations 

of the conic sections have their simplest and most symmetric form. The one-parameter set 

of relationships is of the form ( )u u p% and ( )v v p% , where p03 4 4 3 . Using the 

transformation Eq.(36), we can then obtain ( )s s p% and ( ).t t p%

For use with curves in the plot plane other than straight lines, Eq.(43) is obtained as 

follows. There exists an angle D5 , satisfying 0 / 2D5 67 7 , such that a rotation of the 

quadratic surface through D5 will cause 23 0Dd % and thereby eliminate term in uv from 

Eq.(42).†
23dThe expression for in Eq.(38) contains only the angle 5 (not 0s or 0t ), so 

we can solve 23 0Dd % for the angle:

" # " #
" # " #

" #

23 22 33 23

2 2
23 33 22

23 33 22

cos cos sin sin cos sin 0

cos sin cos sin 0

1cos 2 sin 2 0
2

q q q q

q q q

q q q

5 5 5 5 5 5

5 5 5 5

5 5

0 $ 0 %

0 $ 0 %

$ 0 %

(44)

so that the rotation angle D5 which satisfies the diagonalization condition is

1 23

22 33

21 tan
2

D q
q q

5 0 8 9
% : ;0< =

. (45)

† This property is also a mathematical theorem (Tierney, 1974 p. 227).
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Equation (45) is coded in subroutine regula.F statement rg.67 for use with surfaces in the 

plot plane other than straight lines.

To recap, the equation for the intersection of an MCNP surface given by Eq.(20) with 

the plot plane is a conic given by Eq.(25). The equation for this conic can be written in 

matrix form given by Eq.(26). This bivariate expression can be recast as a univariate 

expression by the use of a general translation and rotation operation in the plot plane as 

given by Eqs.(35) and (36). The univariate expression is suitable for plotting purposes.

We will use the diagonalization condition in Eq.(39) with a determination of the 

transform parameters 0s , 0t , and 5 to obtain the conditions that cause 0DI % in Eq.(43)

for four types of conics in the plot plane. First we will treat cases where a plane and a 

sphere intersect the plot plane. The intersection of a plane with the plot plane produces a 

line, whereas a sphere creates a circle, ellipse, or a point. The intersection of other types 

of surfaces with the plot plane causing a hyperbola or a parabola will then be examined.

4.1. Intersection of a plane with the plot plane

To illustrate the procedure for developing a one-parameter expression for a 3-D

surface in the plot plane, let us consider the 3-D surface to be a plane. Intuitively, the 

intersection will be a line. For a plane, Eq.(20) becomes

0G G G G G G GG x H y J z K$ $ $ % , (46)

so that the matrix representation given by Eq.(5),
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1

1 0
G

G G G G
G

G

x
x y x AM

y
z

( )
* +
* +( ) %, - * +
* +
, -

, (47)

has the coefficient matrix given by Eq. (3) written as

/ 2 / 2 / 2
/ 2 0 0 0
/ 2 0 0 0
/ 2 0 0 0

G G G G

G
G

G

G

K G H J
GAM
H
J

( )
* +
* +%
* +
* +
, -

. (48)

The expression for the plane in plot-plane coordinates is given by Eq.(31) with

0 0 0 2 2 2 2 2 2

0 0
2 2 2

0 0
2 2 2

G GG GG G
y yG G G G x xz z

GG G
yx z

GG G
yx z

a H b Ha G b Ga J b JK G x H y J z

a Ha G a JQM

b Hb G b J

( )
$ $ $ $ $ $ $* +

* +
* +

% $ $* +
* +
* +

$ $* +
* +, -

(49)

or 
11 12 13

21

31

0 0
0 0

q q q
QM q

q

( )
* +% * +
* +, -

(50)

or, noting the symmetry,
11 12 13

12

13

0 0
0 0

q q q
QM q

q

( )
* +% * +
* +, -

(51)

where
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11 0 0 0

12

13

2 2 2

.
2 2 2

G G G G

GG G
yx z

GG G
yx z

q K G x H y J z
a Ha G a Jq

b Hb G b Jq

% $ $ $

% $ $

% $ $

(52)

We next seek to formulate and solve Eq.(41) for the case of a plane intersecting the 

plot plane. First, the diagonalization matrix DIAG is obtained using Eq.(39) with Eqs.

(36) and (51) so that (Mathematica, 1991)

11 12 0 21 0 13 0 31 0 12 13 13 12

12 13

13 12

cos sin cos sin
cos sin 0 0
cos sin 0 0

TDIAG DIA QM DIA
q q s q s q t q t q q q q

q q
q q

5 5 5 5
5 5
5 5

%
$ $ $ $ $ 0( )

* +% $* +
* +0, -

(53)

or, noting the symmetry in Eq.(53),
11 12 13

12 22 23

13 23 33

,
d d d

DIAG d d d
d d d

( )
* +% * +
* +, -

(54)

where

11 11 12 0 21 0 13 0 31 0

12 12 13

13 13 12

cos sin
cos sin ,

d q q s q s q t q t
d q q
d q q

5 5
5 5

% $ $ $ $
% $
% 0

(55)

and

22 23 33 0D D Dd d d% % % . (56)

Next, if Eq.(53) is to be a diagonal matrix, then the off-diagonal elements must be 

zero. From Eq.(53)–(55), this means that we have the conditions

12 13 0D Dd d% % , (57)

so that
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12

13

13

12

cos sin

cos sin ,

q
q

q
q

5 5

5 5

%

% 0
(58)

which we shall make use of momentarily.

When the surface intersecting the plot plane is a plane, the conditions in Eq.(56) cause 

Eq.(42) to reduce to

11 12 13 0D D D DI d d u d v% $ $ % , (59)

which is the equation of a line. Using the expressions in Eq.(55),

" # " #11 12 0 13 0 12 13 13 122 2 2 cos sin 2 cos sin 0DI q q s q t q q u q q v5 5 5 5% $ $ $ $ $ 0 % . (60)

Now, insert the diagonalization conditions given in Eqs.(58) to obtain the two 

expressions

" #

" #

2
12 0 12 13 011 12

2 2 2 22 2
12 13 12 1312 13

2
11 13 12 13 0 13 0

2 2 2 22 2
12 13 12 1312 13

sin 0
2

sin 0 .
2

q s q q tq q v
q q q qq q

q q q q s q t u
q q q qq q

5

5

$ $ 0 %
$ $$

$ $ $ %
$ $$

(61)

Solving the expressions in Eq.(61) for u and v , we get

" #

" #

2
12 0 12 13 011 12

2 2 2 22 2
12 13 12 1312 13

2
11 13 12 13 0 13 0

2 2 2 22 2
12 13 12 1312 13

1
sin 2

1 .
sin 2

q s q q tq qv
q q q qq q

q q q q s q tu
q q q qq q

5

5

( )
* +% $ $

$ $$* +, -
( )
* +% 0 $ $

$ $$* +, -

(62)

Let us now make use of Eqs.(35) and (36) to write
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0

0

cos sin
sin cos .

s s u v
t t u v

5 5
5 5

% $ 0
% $ 0

(63)

Substituting the expressions for u and v from Eq.(62) into Eq.(63) give s and t as

" #

" #

" #

2
11 13 12 13 0 13 0

0 2 2 2 22 2
12 13 12 1312 13

2
12 0 12 13 011 12

2 2 2 22 2
12 13 12 1312 13

11 13 12 13
0 2 2

12 13

1cos
sin 2

1sin
sin 2

1sin
sin 2

q q q q s q ts s
q q q qq q

q s q q tq q
q q q qq q

q q q q st t
q q

5
5

5
5

5
5

> ?( )@ @* +% $ 0 $ $A B$ $$* +@ @, -C D
> ?( )@ @* +0 $ $A B$ $$* +@ @, -C D

% $ 0 $
$

" #

2
0 13 0

2 2 2 2
12 13 12 13

2
12 0 12 13 011 12

2 2 2 22 2
12 13 12 1312 13

1cos .
sin 2

q t
q q q q

q s q q tq q
q q q qq q

5
5

> ?( )@ @* +$A B$ $* +@ @, -C D
> ?( )@ @* +$ $ $A B$ $$* +@ @, -C D

(64)

Rewriting Eq.(64) as

" # " #

" #

2 2
12 0 12 13 0 11 13 12 13 0 13 011 12

02 2 2 2 2 2 2 22 2 2 2
12 13 12 13 12 13 12 1312 13 12 13

2
11 13 12 13 0 13 0 11 12

02 2 2 22 2 2
12 13 12 1312 13 12

cos
sin2 2

cos
sin2 2

q s q q t q q q q s q tq qs s
q q q q q q q qq q q q

q q q q s q t q qt t
q q q qq q q

5
5

5
5

( )
* +% 0 0 0 $ 0 $ $

$ $ $ $$ $* +, -

% 0 0 0 $ $
$ $$ $" #

2
12 0 12 13 0

2 2 2 22
12 13 12 1313

q s q q t
q q q qq

( )
* +$ $

$ $* +, -

(65)

facilitates factoring to give

" #

" #

" #

11 12
2 2
12 13

2 20 0 11 13
13 12 13 11 13 132 2 2 2 2 2

12 13 12 13 12 13

11 13
2 2
12 13

2 20 0
12 12 13 122 2 2 2

12 13 12 13

2

cos cos cos
sin sin sin 2

2

cos cos
sin sin

q qs
q q

s t q qq q q q q q
q q q q q q

q qt
q q

s tq q q q q
q q q q

5 5 5
5 5 5

5 5
5 5

% 0
$

( ) ( )$ 0 0 $ 0* + * +$ $ $, - , -

% 0
$

( )$ 0 $ $* +$ $, - " #
11 12

12 13 2 2
12 13

cos
sin 2

q qq
q q

5
5

( ) $* + $, -

(66)



27

which simplifies to

" #

" #

11 12
132 2

12 13

11 13
122 2

12 13

2

,
2

q qs q p
q q
q qt q p
q q

% 0 $
$

% 0 0
$

(67)

where

" #
0 0 11

13 12 11 132 2 2 2 2 2
12 13 12 13 12 13

cos cos cos
sin sin sin 2

s t qp q q q q
q q q q q q

5 5 5
5 5 5

( ) ( )% 0 0 $ 0* + * +$ $ $, - , -
. (68)

Clearly p03 4 4 3 . Eq.(67) can be written as the following parametric curves for a 

plane intersecting a plot plane, i.e., the parametric equations of a 2-D line,

1 2

4 5

s C C p
t C C p
% $
% $

(69)

where the expressions for 1C , 2C , 4C , and 5C are 

11 1311 12
1 2 13 4 5 122 2 2 2

12 13 12 13

0.50.5 , , ,q qq qC C q C C q
q q q q

00% % % % 0
$ $

. (70)

Equations(69) and (70) constitute the expressions that are used to plot the intersection 

of a plane with the MCNP plot plane using a general quadratic expression for the conic as 

given by Eq.(25). Values of p are selected and used with 1C , 2C , 4C , and 5C to calculate 

values of s and t. The 1C , 2C , 4C , and 5C contain the QM coefficients, which from 

Eq.(49) are composed of the plot-command coefficients and the coefficients of the 3-D

surface intersecting the plot plane. Equation(69) is listed in the MCNP theory manuals 

beginning in 1979 (Thompson, 1979) without the values 1C , 2C , 4C , and 5C given in 

Eq.(70).  Inspection of MCNPX coding reveals that Eq.(69) is contained in subroutine 

ptost.F as pg.13–pg.14, while Eq.(70) is contained subroutine regula.F as rg.37-rg.50.
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4.2. Intersection of a sphere with the plot plane

As another illustration of the procedure that is used to develop a one-parameter 

expression for a 3-D surface in the plot plane, let us examine the case when the 3-D

surface is a sphere. For a sphere, Eq.(20) simplifies to 

2 2 2( ) ( ) ( ) 0 ,G G G G G G G G G G G G GA x B y C z G x H y J z K$ $ $ $ $ $ % (71)

which has the matrix representation given by Eq. (5),

1

1 0
G

G G G G
G

G

x
x y x AM

y
z

( )
* +
* +( ) %, - * +
* +
, -

, (72)

with the coefficient matrix given by Eq. (3) written as

/ 2 / 2 / 2
/ 2 0 0
/ 2 0 0
/ 2 0 0

G G G G

G G
G

G G

G G

K G H J
G AAM
H B
J C

( )
* +
* +%
* +
* +
, -

. (73)

The expression for a sphere in plot-plane coordinates is given by Eq.(31) which, owing to 

the symmetry of the matrix GAM in Eq.(73), is (Mathematica, 1991)

11 12 13

12 22 23

13 23 33

P P P

P P P

P P P

q q q C G F
QM q q q G A H

q q q F H B

( )( )
* +* +% % * +* +
* +* +, - , -

, (74)

with the matrix coefficients
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" #

" #

2 2 2
11 0 0 0 0 0 0

12 0 0 0

13 0

2 2 2

23

3

0 0

22

2 2 2
3

1
2
1
2

++

+ +

.

G G G G G G G

G G G G G G
x y z x y z

G G G G G G
x y z x

G G G
x y z

G G
x y z

G G

y z

G
x y z

G
x y z

q A x B y C z G x H y J z K

q A a x B a y C a z a G a H a J

q A b x B b y C b z b G b H

A a B a C a

q A a B

b J

q

b b C b

b b C

a a

q A B b

$

% $ $ $ $ $ $

% $

$

%

$ $ $ $

$ $ $ $

%

%

% $ (75)

Next, a formulation and solution to Eq.(41) for the case of a sphere intersecting the 

plot plane is developed. First, the diagonalization matrix DIAG is obtained using Eq.(39)

with Eqs. (36) and (74) to obtain 

11 12 13

12 22 23

13 23 33

d d d
DIAG d d d

d d d

( )
* +% * +
* +, -

, (76)

where

" # " #
" # " #

" # " #
" #

2 2
11 11 12 0 22 0 13 0 23 0 0 33 0

12 12 22 0 23 0 13 23 0 33 0

13 12 22 0 23 0 13 23 0 33 0

22 22 23 23 33

23 23 22

2 2 2
cos sin

sin cos
cos cos sin sin cos sin
cos cos sin si

d q q s q s q t q s t q t
d q q s q t q q s q t
d q q s q t q q s q t
d q q q q
d q q

5 5
5 5

5 5 5 5 5 5
5 5 5

% $ $ $ $ $
% $ $ $ $ $

% 0 $ $ $ $ $

% $ $ $

% 0 $ " #
" # " #

33 23

33 23 22 33 23

n cos sin
sin cos sin cos cos sin .

q q
d q q q q

5 5 5
5 5 5 5 5 5

0

% 0 0 $ 0

(77)

Next, if Eq.(76) is to be a diagonal matrix, then the off-diagonal elements must be 

zero. Thus, 

12 13 23 0D D Dd d d% % % . (78)

The conditions in Eq.(78) will be used shortly.
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For the case of the intersection of a sphere with the plot plane, Eq. (41), i.e., 

& '
1

1 0TI u v DIA QM DIA u
v

( )
* +% %* +
* +, -

(79)

is 

2 2
11 12 13 23 22 332 2 2 0I d d u d v d uv d u d v% $ $ $ $ $ % . (80)

For the sake of an explicit expression, use of the expressions in Eq.(77) in Eq. (80) gives

" # " #
" # " #

" # " #

2 2
11 12 0 22 0 13 0 23 0 0 33 0

12 22 0 23 0 13 23 0 33 0

12 22 0 23 0 13 23 0 33 0

23 22 33 23

22 23

2 2 2
2 cos sin

2 sin cos

2 cos cos sin sin cos sin

cos cos si

I q q s q s q t q s t q t
q q s q t q q s q t u

q q s q t q q s q t v

q q q q uv

q q

5 5

5 5

5 5 5 5 5 5

5 5

% $ $ $ $ $

$ $ $ $ $ $( ), -
$ 0 $ $ $ $ $( ), -
$ 0 $ 0( ), -
$ $" # " #

" # " #

2
23 33

2
23 22 33 23

n sin cos sin

sin cos sin cos cos sin .

q q u

q q q q v

5 5 5 5

5 5 5 5 5 5

$ $( ), -
$ 0 0 $ 0( ), -

(81)

This expression contains linear and quadratic terms in u and v . This will necessitate 

modifications to the solution process followed for the case of a plane intersecting a plot 

plane, where, Eq.(59), only linear terms in u and v existed.

To proceed, the diagonalization conditions in Eq.(78) are used. These conditions with 

the expressions in Eq.(77) constitute three equations in the three unknown variables 

0s , 0t and 5 . The expression for 23d contains only the angle 5 , so we can solve 23 0Dd %

for the angle D5 as given in Eq.(45).
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Next, we substitute the angle D5 from Eq.(45) into the expressions for  12d and 13d in 

Eq.(77) to obtain two coupled equations involving the two unknowns 0s and 0t . Solving 

these equations gives (after some algebra)

13 23 12 33
0 2

22 33 23

q q q qs
q q q

0%
0

(82)

12 23 13 22
0 2

22 33 23

q q q qt
q q q

0%
0

(83)

as the values for the translation involved in the diagonalization process. These values are 

coded in subroutine regula.F as rg.77 and rg.78.

With the diagonalization conditions of Eq.(78) and the diagonalization parameters in  

Eqs.(45), (82), and (83), the equation of the conic for a sphere intersecting the plot plane 

given by Eq.(80) reduces to 

2 2
11 22 33 0D D D DI d d u d v% $ $ % , (84)

where 11
Dd , 22

Dd , and 33
Dd are 11d , 22d , and 33d given in Eq.(77) evaluated using the 

diagonalization parameters D5 , 0s , and 0t given in Eqs. (45), (82), and (83). The 

diagonalization process means that Eq.(84) can be written using a one-parameter set of 

relationships of the form ( )u u p% and ( )v v p% . So expressions for ( )u u p% and 

( )v v p% are sought which satisfy Eq.(84).

In general, the form of ( )u u p% and ( )v v p% is dependent upon the signs of 11
Dd , 22

Dd ,

and 33
Dd . It can be shown from analytic geometry (Tierney, pp. 226–230) that the 

following conics exist:
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22 33

22 33

22 33

0 : ellipse, circle, point, or imaginary
0 : hyperbola, or, two, intersecting lines
0 : parabola, a, line, or two parallel lines or imaginary ,

D D

D D

D D

d d
d d
d d

E

7

%

(85)

where the case 22 33 0D Dd d % has either 22 0Dd 1 or 33 0Dd 1 .

The intersection of a sphere with a plane is an ellipse, circle, or a point. Consequently, 

22 33 0D Dd d E .  Thus, the selection

11

22

11

33

( ) cos

( ) sin

D

D

D

D

du p p
d

dv p p
d

% 0

% 0

(86)

causes Eq.(84) to be satisfied. The square-root quantities in Eq.(86) are coded in regula.F

as rg.111 and rg.112, while the trigonometric quantites are coded in regula.F as rg.68 

and rg.70.

Using the formulas in Eq.(86), a univariate set of expressions ( )s s p% and ( )t t p% are 

obtained for a sphere intersecting the plot plane. From Eq.(34),

0

0

cos sin
sin cos .

s s u v
t t u v

5 5
5 5

% $ 0
% $ 0

(87)

Using the diagonalization values D5 , 0s , and 0t given in Eqs. (45), (82), and (83) and 

inserting Eq.(86) gives 

1 2 3

4 5 6

sin cos
sin cos ,

s C C p C p
t C C p C p
% $ $
% $ $

(88)

where the expressions for 1C – 6C are 
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11 11
1 0 2 3

33 22

11 11
4 0 5 6

33 22

, sin , cos

, cos , sin ,

D D
D D

D D

D D
D D

D D

d dC s C C
d d

d dC t C C
d d

5 5

5 5

% % 0 0 % 0

% % 0 0 % 0

(89)

which are coded in ptost.F as pj.25 and pg.26.

4.3. Intersection of other surfaces with the plot plane

The analysis in Section 4.2 is valid for surfaces, including a sphere, whose intersection 

with the plot plane is an ellipse. We next consider the cases when the intersection of a 3-

D surface with the plot plane causes a hyperbola or a parabola to be formed.

Consider the case of a hyperbola. The intersection of a 3-D surface with the plot plane 

given by Eq.(41),

& '
1

1 0TI u v DIA QM DIA u
v

( )
* +% %* +
* +, -

, (90)

or as written in the form of Eq.(42),

2 2
11 12 13 23 22 332 2 2 0I d d u d v d uv d u d v% $ $ $ $ $ % . (91)

Applying diagonalization so that the off-diagonal elements are set to zero,

12 13 23 0D D Dd d d% % % , (92)

the bivariate quadratic reduces to a form with only quadratic terms

2 2
11 22 33 0D D D DI d d u d v% $ $ % . (93)
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According to the conditions in Eq.(85), for a hyperbola the signs of 22
Dd and 33

Dd differ.  In 

this situation, recalling that

2 2cosh sinh 1x x0 % , (94)

the selection

11

22

11

33

( ) sinh

( ) cosh

D

D

D

D

du p p
d

dv p p
d

%

% 0

(95)

causes Eq.(84) to be satisfied. Inserting the expressions in Eq.(95) into Eq.(34) gives 

1 2 3

4 5 6

sinh cosh
sinh cosh ,

s C C p C p
t C C p C p
% $ $
% $ $

(96)

where the expressions for 1C – 6C are 

11 11
1 0 2 3

22 33

11 11
4 0 5 6

22 33

, cos , sin

, sin , cos ,

D D
D D

D D

D D
D D

D D

d dC s C C
d d

d dC t C C
d d

5 5

5 5

% % % 0 0

% % % 0 0

(97)

as the one-parameter set of expressions ( )s s p% and ( )t t p% for any surface intersecting 

the plot plane which results in a hyperbolic conic. The formulas in Eq.(97) are coded in 

regula.F lines rg.127–rg.135 and rg.144–rg.145, while the expressions in Eq.(96) are 

coded in ptost.F as pj.32 and pg.33.

For the case of a parabola we return to Eq.(42),

2 2
11 12 13 23 22 332 2 2 0I d d u d v d uv d u d v% $ $ $ $ $ % (98)
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The axis-rotation, or, equivalently, the congruency transformation, eliminates the uv

term to give the bivariate quadratic

2 2
11 12 13 22 332 2 0D D D D D DI d d u d v d u d v% $ $ $ $ % . (99)

From analytic geometry, Eq.(99) is a general parabola when either 22 0Dd % or 33 0Dd % . In 

addition, when 22 0Dd % we can take 13 0Dd % to have a parabola whose vertex is the u-axis.

For the case 22 0Dd % and 13 0Dd % (MCNPX regula.F index J=3), the congruency 

transformation matrix is

11 12

12

33

0
0 0

0 0

D D

D

D

d d
DIAG d

d

( )
* +% * +
* +, -

. (100)

Eq.(99) reduces to

2
11 12 332 0D D D DI d d u d v% $ $ % , (101)

which is satisfied by selecting

233 11

12 12

1( )
2

( ) .

D D

D D
d du p p
d d

v p p

8 9
% 0 $: ;

< =
%

(102)

Inserting the expressions in Eq.(102) into Eq.(34) gives

2
1 2 3

2
4 5 6 ,

s C C p C p
t C C p C p
% $ $

% $ $
(103)

where 1C – 6C are

3311
1 0 2 3

12 12

3311
4 0 5 6

12 12

1 1cos , sin , cos
2 2
1 1sin , cos , sin .
2 2

DD
D D D

D D

DD
D D D

D D

ddC s C C
d d

ddC t C C
d d

5 5 5

5 5 5

% 0 % 0 %

% 0 % % 0
(104)
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For the case 33 0Dd % (MCNPX regula.F index J=2), we can take 12 0Dd % to obtain a

parabola whose vertex is the v-axis. For the case 22 0Dd % and 12 0Dd % (J=3), the 

congruency transformation matrix is

11 13

22

13

0
0 0

0 0

D D

D

D

d d
DIAG d

d

( )
* +% * +
* +, -

. (105)

Eq.(99) reduces to 

2
11 13 222 0D D D DI d d v d u% $ $ % , (106)

which is satisfied by the selections

222 11

13 13

( )

1( ) .
2

D D

D D

u p p
d dv p p
d d

%

8 9
% 0 $: ;

< =

(107)

Inserting the formulas in Eq.(107) into Eq.(34) gives

2
1 2 3

2
4 5 6 ,

s C C p C p
t C C p C p
% $ $

% $ $
(108)

where the expressions for 1C – 6C are

11 22
1 0 2 3

13 13

11 22
4 0 5 6

13 13

1 1sin , cos , sin
2 2
1 1cos , sin , cos .
2 2

D D
D D D

D D

D D
D D D

D D

d dC s C C
d d
d dC t C C
d d

5 5 5

5 5 5

% $ % %

% $ % % 0
(109)

The constants in Eqs.(104) and (109) are coded in regula.F lines rg.99–rg.104 and 

rg.144–rg.145, while Eq.(108) is evaluated in ptost.F pj.18–pj.19.
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5. Geometry plotter: intersection of two curves in the plot plane

Functionality of the geometry plotter includes the determination of the POIs of curves 

in the plot plane. The curves are created by the intersections of the 3-D surfaces with the 

plot plane. The POIs are determined in plot-space " #,s p coordinates. These points are 

used to determine the identity of cells on either side of the curve connecting the POIs and 

the type of curve connecting the POIs. For graphic visualization a solid line is used to 

distinguish differing cells on either side of the curve, no line is used when identical cells 

lie on either side of the curve, and a dashed line is used to highlight instances involving 

geometry problems or ambiguities.

These concepts are illustrated in the following plots that were created using the MCNP 

interactive geometry plotter. The model consists of a sphere containing two boxes. The 

relevant geometry is listed in Appendix 1. Each plot shows the image in the plot plane at 

z = 0 with extent 5 and with cell and surface labeling activated.

Figure 4 shows the plotted geometry for the correct model. The cell numbers are 

labeled in red; the sphere is cell 1 and the boxes cells 2 and 3. The surface numbers are 

labeled in black; the sphere is defined by surface 1, cell 2 by surfaces 10–13, and cell 3 

by surfaces 20–23. For this model the geometry is well defined and all surfaces are 

plotted using solid black lines.
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Figure 4. Geometry plot for the correct model.
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Figure 5 shows the plotted geometry for a faulty model. The error in this model was 

created by omitting “#3” in the description of cell 1. The symbol # is the complement 

operator which is used to designate not in.† Thus, cell 3 is specified, but cell 1 lacks the 

information necessary to recognize its presence. Consequently, the surfaces for cell 3 are 

plotted using dotted red lines. The plot legend signals the geometry error. The presence of 

cell 1 inside of the sphere is unaffected, so it is plotted using solid black lines.

Figure 5. Geometry plot for error created by omitting #3 in the description of cell 1.

† The complement operator is just a shorthand cell-specification method that implicitly uses the intersection 
and union operator. Details describing the combinatorial geometry feature in MCNP are provided in the 
manual (Pelowitz, 2011).
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Figure 6 contains the plotted geometry for a model in which surface 23 of cell 3 

erroneously has been assigned a positive rather than a negative sense; i.e., +23 instead of  

–23. This error causes the description of cell 3 to be incorrect which causes the 

configuration of cell 3 to be incorrect. The three sides of cell 3 are plotted using solid 

black lines. The upper boundary of cell 3 intersects the sphere and is plotted using a

dotted red line. The plot legend signals the geometry error. As with the previous model, 

cell 1 is correctly specified and is plotted using solid black lines.

Figure 6. Geometry plot for error created by incorrectly specifying surface 23 of cell 3 
with a positive sense.
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The model used to plot Fig. 7 contains two errors: a positive sense for surface 23 of  

cell 3 and for surface 11 of cell 2. These errors cause the distortion of both boxes, cells 2 

and 3. Without delving into the combinatorial geometry, suffice it to say that cells 2 and 3 

erroneously overlap each other which results in boundaries that are plotted using solid 

black lines and dotted red lines. The boundaries of cells 2 and 3 intersected with the 

sphere and those sections are plotted  as dotted red lines. The plot legend signals the 

geometry error. 

Figure 7. Geometry plot displaying errors created by incorrectly specifying surface 23 of 
cell 3 and surface 11 of cell 2 as having a positive sense.
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For each of the models plotted in Figs. 4–7, MCNP uses a combination of Boolean 

logic†

The POI of two lines in the plot plane is derived using the parametric form of a line as 

given by Eq.(69). For line 1

and analytic geometry algorithms to determine and plot the geometry. These 

algorithms create a geometry recognition capability that makes the geometry plotter a 

powerful debugging tool for MCNP users. We do not delve into the Boolean logic aspect 

of the geometry plotter in this article. However, next we do present some of the analytic-

geometry formulations that are used to determine the POI for curves in the plot plane.

These formulations have not been previously documented.

5.1. Intersection of two lines in the plot plane

1 2

4 5

s C C p
t C C p
% $
% $

(110)

and line 2

1 2

4 5

s D D q
t D D q
% $
% $

. (111)

These are lines through the points 0 1 4( , )P C C and 0 1 4( , )Q D D in the directions 

2 5
ˆ ˆA C i C j% $

!
and 2 5

ˆ ˆB D i D j% $
!

(Tierney, p. 438).

The POI is derived by equating s and t in Eqs.(110) and (111) so that 

1 2 1 2

4 5 4 5

C C p D D q
C C p D D q

$ % $
$ % $

. (112)

Solving the second expression in Eq.(112) for q gives

† Boolean logic is also used for particle tracking.



43

4 5 4

5

C C p Dq
D

$ 0% . (113)

Substituting this result into the first expression in Eq.(112) and solving for p gives

" # " #5 1 5 2 4 4

2 5 2 5

D D C D C D
p

C D D C
0 $ 0

%
0

. (114)

The result in Eq.(114) is coded as “a” in inter.F line in.87 and is stored in the array 

crs(nxp) as the location of the intersection of two lines.

Two vectors are parallel if their cross product is zero. Thus, here we calculate

2 5 2 5
ˆ ˆA B C D D CF % 0 , (115)

which is the denominator of Eq.(114) and is coded as “b” in inter.F line in.85, can be 

used as a check to assess whether the two lines intersect.

5.2. Intersection of a line and a quadratic in the plot plane

The POI of a line and a quadratic in the plot plane is derived using the parametric 

form of a line as given by Eq.(69) and the equation of a general quadratic as given by 

Eq.(32). For the line 

1 2

4 5

s C C p
t C C p
% $
% $

(116)

and the quadratic 

2 2
22 23 33 12 13 112 2 2 0q s q st q t q s q t q$ $ $ $ $ % . (117)
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Substitution of the expressions for s and t in Eq.(116) into Eq.(117), expanding, and 

collecting terms in p gives

2
1 2 3 0c p c p c$ $ % , (118)

where

" #
" #

2 2
1 23 2 5 22 2 33 5

2 12 2 13 5 23 1 5 2 4 22 1 2 33 4 5

2 2
3 11 12 1 13 4 23 1 4 22 1 33 4

2
2

2 .

c q C C q C q C
c q C q C q C C C C q C C q C C

c q q C q C q C C q C q C

% $ $

% $ $ $ $ $( ), -
% $ $ $ $ $

(119)

Eq.(119) is coded in subroutine inter.F as in.97–in.101. The quadratic expression in 

Eq.(118) is solved in subroutine quad.F. Real roots are used for POI plot analysis.

5.3. Intersection of two quadratics in the plot plane

The intersection of two quadratics in the plot plane makes use of Eq.(32) for both 

equations. The POI formulation yields a quartic polynomial. The analysis for the roots of 

a quartic has previously been developed (Cashwell and Everett, 1969) and the results are

coded in subroutine quart.F. Real roots are used for POI plotting.

6. Geometry plotter coding implementations

The MCNP geometry plotter contains nine primary subroutines. A discussion and 

schematic of the code flow is presented in Appendix 2.
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7. Summary and conclusions

The Los Alamos MCNP Monte Carlo code contains several useful features that were 

developed in the late 1970s to create and plot geometry for radiation-transport models.

The MCNP geometry transformation capability permits the creation of objects using 

simple analytic geometry expressions and object translation and/or rotation to locations 

and/or orientations of interest in models. The geometry plotter provides 2-D images of

slices through model geometry. 

Until now, detailed derivations of the expressions used by MCNP to perform

geometry transformations and geometry plots have not been available. Most of the 

equations underlying the MCNP geometry transformation and geometry plot utility have 

been derived here. Key expressions have been associated with lines of code in MCNPX

(MCNPX contains line identifiers whereas MCNP does not). The derived equations 

agree with the expressions coded in MCNP.

The derivations indicate that the rotation-component “B” values in the TRF matrix are 

transposed in MCNP relative to the theoretical representation. Coded expressions in 

subroutines trfsrf.F, dunlev.F, etc. involving TRF matrix elements reflect this 

discrepancy.  MCNP corrects for this by transposing the TRF rotation elements in 

subroutine trfmat.F during processing of the input data. Consequently, MCNP 

transposes the TRF matrix twice in order to perform the correct coordinate-
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transformation operation. It is unclear why this treatment was coded in MCNP. Future 

work may be done to rewrite the code to simplify this treatment.
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APPENDIX 1

The geometry portion of the input file for the test problem presented in Section 5 is 

listed below.

Boxes to illustrate geometry plots.
c
c boxes & outer sphere
1   0   #2 #3 -1                           $outer sphere containing 2 boxes
2   0   10 -11  12 -13  14 -15     $upper box
3   0   20 -21  22 -23  24 -25     $lower box
c outside
100 0 1

c  surfaces
1 so  5.0            $sphere of radius 5.0 centered at the origin

c  upper box
10 px -2.5          $plane at x=-2.5
11 px -0.5          $plane at x=-0.5
12 py  1.0          $plane at y= 1
13 py  3.0          $plane at y= 3
14 pz -1.0          $plane at z=-1
15 pz  1.0          $plane at z= 1

c  lower box
20 px  0.5          $plane at x= 0.5
21 px  2.5          $plane at x= 2.5
22 py -3.0          $plane at y=-3
23 py -1.0          $plane at y=-1
24 pz -1.0 $plane at z=-1
25 pz  1.0        $plane at z= 1
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APPENDIX 2

The MCNP geometry plotter makes use of nine primary subroutines. An overview of 

these subroutines is provided here.†

As illustrated in Fig. 8, MCNP execution begins with the main.F, which controls 

initialization, plotting, cross-section input, and particle transport. Subroutine imcn.F is 

called by main.F to initiate transport.  Subroutine imcn.F calls igeom.F where the 

problem geometry is set up using subroutines mbody.F, trfsrf.F, and amatrx.F.

Subroutine mbody.F changes the macrobody representation of surface coefficients into 

simple surfaces. Subroutine trfsrf.F is then used to perform any need transformations of 

surfaces from local to global coordinates. Subroutine trfsrf.F uses amatrx.F to change 

surface-coefficient representations from general quadratic to matrix form as discussed in 

the material related to Eqs.(1)–(9). Following initialization, plotg.F is called for 

geometry plotting. 

† Original versions of several of these subroutines are identified in mcnp1a, release date August, 1977, as 
having been created by Charles A. Forest late in 1974 at Los Alamos Scientific Laboratory. Revisions to 
these subroutines have been made since mcnp1a.
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AMATRX
Load the general-quadratic form of

the coefficients for each surface
into the AM matrix format.

MATMPY
Perform matrix multiplication.

TRFSRF
Transform  the coefficients of
any surfaces that need it from

local to global coordinates.

MBODY
Expand any macrobody surfaces

on cell cards to full surfaces.

IGEOM
Set up the geometry.

IMCN
Initiation for Monte Carlo transport.

PLOTG
Make geometry plots.

MAIN
Driver for initialization, plotting,

cross-section input, and particle transport.

Figure 8. Initialization aspect of geometry plotting using MCNP. The primary 
subroutines used for geometry plotting are shown in the blue boxes.

Ash sown in Fig. 9, subroutine plotg.F calls two principal subroutines, amatrx.F and 

viewz.F. Subroutine amatrx.F loads the general-quadratic form of the surface 

coefficients for each surface into matrix form. At this point in execution, these 

coefficients are the global-coordinate values GAM as given in Eq.(9).

Subroutine viewz.F is the driver routine for the calculation of the arcs and cell number 

locations to be plotted. For each surface, viewz.F calls regula.F and pltsrf.F to calculate 

the points that define the arcs used to plot each portion of each surface. Code flow for 

these subroutines is shown in Fig. 9.
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Subroutine regula.F calculates several quantities. First, the QM matrix coefficients 

for each surface are calculated as discussed in the material related to Eqs.(25)–(32).

Second, the coefficients for the univariate equations in p are calculated for each arc. If the 

QM coefficients are such that the equation is a straight line, the constants in Eq.(70) are 

calculated directly. The diagonalization procedure discussed in the material related to 

Eqs.(34)–(42) and Sections 4.2 and 4.3 is used for parallel or intersecting lines, a 

parabola, ellipse, or hyperbola. For this procedure the diagonalization parameters D5 , 0s ,

and 0t parameters in Eqs.(45), (82), and (83) and the translation-rotation DIA in Eq.(36)

are calculated. The QM matrix is then formed using Eq.(39) to give the quadratic form 

given of the curve in u,v in Eq.(43). The quadratic coefficients are evaluated to determine 

whether the type of curve(s): parallel or intersecting lines, a parabola, ellipse, or 

hyperbola. Finally, the coefficients for the univariate equations in p are calculated. For an 

ellipse, circle, or point, the coefficients (square-root quantities) in Eq.(86) are used; for a

hyperbola the coefficients in Eq.(97) are used, and for a parabola the constants in 

Eqs.(104) or (109) are used.

Subroutine pltsrf.F is the driver for the calculation of the points that define each of 

the arcs of each surface in the plot plane. Points defining each are are loaded into a buffer

for plotting.
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REGULA
Calculate the QM matrix and the

 coefficients for the curves in p of each
surface intersecting the plot plane.

PLTSRF
Driver for calculation of the

points that define the arcs of
each surface in the plot plane.

VIEWZ
Compute the arcs and cell-number

locations to be plotted.

AMATRX
Load the general-quadratic form of

the coefficients for each surface
into the AM matrix form.

PLOTG
Plot the geometry.

Figure 9. MCNP upper-level geometry plotting subroutines.

Figures 10 and 11 show the subroutines associated with pltsrf.F. Subroutine pltsrf.F

calls inter.F, ptost.F, and chkcel.F. Subroutine inter.F is used to find the intersections 

within the plot window of each curve with all other curves. To do so, inter.F uses 

sstop.F to determine the points where each curve (straight line, parabola, ellipse, 

hyperbola) crosses the window boundary and regula.F. The POI for the intersection of 

two lines, as given in Eq.(114), is calculated in inter.F. For the intersection of a line and 

a general quadratic in the plot plane, subroutine inter.F calls quad.F to solve Eq.(118)

using Eq.(119) for one or two POIs. The intersection of two quadratics yields a quartic 

polynomial that is solved using subroutine quart.F for the POIs.

Subroutine ptost.F calculates the point ( ), ( )s p t p from the parametric representation 

of each curve in the plot plane. Expressions for a straight line, parabola, ellipse, and 

hyperbola are given in Eqs.(69)–(70), (103)–(104), (88)–(89), and (96)–(97),

respectively.
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Subroutine chkcel.F is used to check the sense of a point on either side of an arc to 

identify the cells on either side of the arc. This information is used to set the type of line 

to be plotted for each segment of the curve. When the geometry is well defined either 1) 

no line is plotted when there are identical cells on either side of the curve or 2) a solid 

line is plotted when different cells are located on opposite sides of the curve. When the 

geometry is erroneous, a dashed line is plotted.

INTER
Find the intersections within the

plot window of each curve
with all other curves.

PTOST
Calculate the point s(p),t(p) from

the parametric representation
of each curve for each surface.

CHKCEL
Check the sense of a point
with respect to the surfaces

of a cell.

PLTSRF
Driver for calculation of the

points that define the arcs of
each surface in the plot plane.

Figure 10. MCNP lower-level geometry plotting subroutines associated with pltsrf.F.

STTOP
Set up the points where each

curve crosses the
window boundary.

MATMPY
Matrix multiplication.

REGULA
Calculate the QM matrix and the

coefficients for the curves in p of each
surface intersecting the plot plane.

QUAD, QUART
Solve a quadratic, quartic.

INTER
Find the intersections within the

plot window of each curve
with all other curves.

Figure 11. MCNP lower-level geometry plotting subroutines associated with inter.F.
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